
Algorithmica (2009) 54: 557–567
DOI 10.1007/s00453-008-9203-1

A 1-Local Asymptotic 13/9-Competitive Algorithm
for Multicoloring Hexagonal Graphs

Yong Zhang · Francis Y.L. Chin · Hong Zhu

Received: 17 August 2007 / Accepted: 9 June 2008 / Published online: 16 July 2008
© Springer Science+Business Media, LLC 2008

Abstract In the frequency allocation problem, we are given a mobile telephone net-
work, whose geographical coverage area is divided into cells, wherein phone calls
are serviced by assigning frequencies to them so that no two calls emanating from
the same or neighboring cells are assigned the same frequency. The problem is to
use the frequencies efficiently, i.e., minimize the span of frequencies used. The fre-
quency allocation problem can be regarded as a multicoloring problem on a weighted
hexagonal graph. In this paper, we give a 1-local asymptotic 4/3-competitive distrib-
uted algorithm for multicoloring a triangle-free hexagonal graph, which is a special
case of hexagonal graph. Based on this result, we then propose a 1-local asymptotic
13/9-competitive algorithm for multicoloring the (general-case) hexagonal graph,
thereby improving the previous 1-local 3/2-competitive algorithm.

Keywords Online algorithm · Multicoloring · Hexagonal graphs

A preliminary version of this paper appeared in the Proceedings of the 13th Annual International
Computing and Combinatorics Conference (COCOON 2007), LNCS 4598, pp. 526–536.
Y. Zhang research was supported by European Regional Development Fund (ERDF).
F.Y.L. Chin research was supported by Hong Kong RGC Grant HKU-7113/07E.
H. Zhu research was supported by National Natural Science Fund (grant #60496321).

Y. Zhang (�) · F.Y.L. Chin
Department of Computer Science, The University of Hong Kong, Hong Kong, Hong Kong
e-mail: yzhang@cs.hku.hk

F.Y.L. Chin
e-mail: chin@cs.hku.hk

H. Zhu
Institute of Theoretical Computing, East China Normal University, Shanghai, China
e-mail: hzhu@sei.ecnu.edu.cn

mailto:yzhang@cs.hku.hk
mailto:chin@cs.hku.hk
mailto:hzhu@sei.ecnu.edu.cn

558 Algorithmica (2009) 54: 557–567

1 Introduction

Wireless communication based on Frequency Division Multiplexing (FDM) technol-
ogy is widely used in the area of mobile computing today. In such FDM networks,
a geographic area is divided into small cellular regions or cells, each containing one
base station. Base stations communicate with each other via a high-speed wired net-
work. Calls between any two clients (even within the same cell) must be established
through base stations. When a call arrives, the nearest base station must allocate a
frequency from the available spectrum to the call without causing any interference
to other calls. In practice, when the same frequency is assigned to two different calls
emanating from cells that are geographically close to each other, interference may
occur which distorts the radio signals. To avoid interference, the temptation is to use
many frequencies. However, spectrum is a scarce resource, so efficient utilization of
the available spectrum is essential for FDM networks.

The frequency allocation problem, including the off-line version and online ver-
sion, has been extensively studied [1–4, 6, 9, 10, 12, 13, 15]. The research on this
problem is mainly focused on the cellular network, where cells are hexagonal regions
as shown in Fig. 1. In the off-line problem (the calls to be serviced are known a pri-
ori), McDiarmid and Reed [12] have shown that minimizing the span of frequencies
to satisfy all the call requests is NP-hard, they also proved that 4/3 is the lower bound
of approximation ratio. Further, two 4/3-approximation algorithms were given in [12]
and [14] respectively.

For the online version, there are mainly three strategies, which have been well
studied: the fixed allocation assignment (FAA) [11], the greedy algorithm (Greedy)
[5] and the hybrid algorithm [4]. FAA partitions cells into independent sets which are
each assigned a separate set of frequencies. It is easy to see that FAA is 3-competitive
as cellular networks are 3-colorable [5]. Greedy assigns the minimum available num-
ber (frequency) to a new call so that the call does not interfere with calls of the
same or adjacent cells. Caragiannis et al. [5] proved that the competitive ratio of
Greedy in cellular network is at least 17/7 and at most 2.5. Chan et al. [3] closed the
gap and proved that Greedy is 17/7-competitive. Furthermore, Chan et al. [4] gave a
2-competitive algorithm, say hybrid, which can be regarded as a combination of FAA
and Greedy. Since the lower bound of competitive ratio of frequency allocation in
cellular networks is also 2, hybrid is optimal.

The frequency allocation problem in cellular network can be abstracted to the
problem of multicoloring a weighted hexagonal graph, in which each vertex has a
positive weight which specifies how many different colors have to be assigned to the

Fig. 1 Example of a cellular
network (with hexagonal cells)

Algorithmica (2009) 54: 557–567 559

vertex. Given the constraint that the same color cannot be assigned to the same or
adjacent vertices, the target is to minimize the number of assigned colors.

In frequency allocation problems, the size of cellular network is very large, when
handling a call request, the computation will be very complex if all information of
the whole network is needed. In reality, each server in a cell only knows its position
before processing the request sequence of calls; when satisfying call requests, each
server only knows its local information, i.e., some information within a fixed distance.
Such kind of processing gives us a motivation to study distributed algorithms. In this
paper, we focus on distributed algorithms for the multicoloring, i.e., each vertex is
an independent server, which runs the algorithm to assign multicolors to the vertex
based on what is known as k-local information. The concept of k-local distributed
algorithms was introduced by Janssen et al. [8], where an algorithm is k-local if the
computation at a vertex depends only on the information of the neighboring vertices
of at most k distance away (suppose each edge has unit distance). Similar to frequency
allocation problem, we can assume that in multicoloring problem, each vertex also
knows its position in the graph.

In [8], Janssen et al. proved (the next lemma) that a k-local c-approximate off-line
algorithm can be easily converted to a k-local c-competitive online algorithm. Thus,
to design a k-local online algorithm, we need only to focus on the k-local off-line
problem.

Lemma 1 [8] Let A be a k-local c-approximate off-line algorithm for multicoloring.
Then A can be converted into a k-local c-competitive online algorithm for multicol-
oring.

The problem of multicoloring a hexagonal graph is hard. But for some various
graph classes, this problem may have a better performance. An interesting induced
graph, triangle-free hexagonal graph, has been studied for the multicoloring problem
[7, 16]. A graph is triangle-free if there are no 3-cliques in the graph, i.e., there are no
three mutually-adjacent vertices with positive weights. An example of a triangle-free
hexagonal graph is shown in Fig. 2.

The best known competitive ratios for 0-, 1-, 2- and 4-local distributed algo-
rithms for multicoloring on (general) hexagonal graphs are 3, 3/2, 4/3 and 4/3, re-
spectively [8, 17]. It is possible to do better for triangle-free hexagonal graphs. For

Fig. 2 An example of a
triangle-free hexagonal graph,
where solid circles are vertices
with positive weights

560 Algorithmica (2009) 54: 557–567

example, in [16], a 2-local 5/4 competitive algorithm was given, and an inductive
proof for the 7/6 ratio was reported in [7].

The remaining of this paper is organized as follows. In Sect. 2, we introduce
some preliminary terminology to be used in this paper. In Sect. 3, we give a
1-local asymptotic 4/3-competitive algorithm for multicoloring a triangle-free hexag-
onal graph. Based on this result, we then propose, in Sect. 4, a 1-local asymp-
totic 13/9-competitive algorithm for the multicoloring problem in hexagonal graph,
which improves the previous 3/2-competitive result. Finally, we give the conclusion
in Sect. 5.

2 Preliminary Terminology

Given a hexagonal graph with a non-negative weight at each vertex, we use a
2-coordinate system to represent each vertex. In particular, referring to the lines
shown in Fig. 2, each vertex can be represented by coordinate (i, j) where i is the
coordinate for the horizontal line, j for the up-sloping line. For example, a vertex
with coordinate (i, j) and its six neighboring vertices, denoted by UL, L, DL, UR, R
and DR, are represented as shown in Fig. 3.

Next, we define the parity of a vertex with respect to its various neighbors. We say
that the parity of a vertex v with coordinate (i, j) is:

1. odd (alternatively, even) with respect to its L or R neighbor if j ≡ 1 mod 2 (cor-
respondingly, j ≡ 0 mod 2);

2. odd (alternatively, even) with respect to its UL or DR neighbor if i ≡ 1 mod 2
(correspondingly, i ≡ 0 mod 2);

3. odd (alternatively, even) with respect to its DL or UR neighbor if i ≡ 1 mod 2
(correspondingly, i ≡ 0 mod 2).

Let wv be the weight of vertex v, which corresponds to the number of colors
needed to multicolor v. After the multicoloring assignment, each vertex v will be
assigned a set Fv of colors, such that Fv ⊂ Z+, a set of positive integers, and |Fv| =
wv , where, for any two adjacent vertices u and v, Fu ∩ Fv = φ.

In order to help with this multicoloring assignment, we shall partition the set of
vertices into three sets, each associated with a base color which denotes a separate set
of colors (integers). Since a hexagonal graph is 3-colorable, we use three base colors,

Fig. 3 Coordinates of a vertex
(i, j) and its neighboring
vertices

Algorithmica (2009) 54: 557–567 561

say Red, Green and Blue, coloring all the vertices of a hexagonal graph, such that
each vertex colored with one of the three base colors, and no two adjacent vertices
are of the same base color and similarly the same color. Furthermore, we assume a
transitive order on these three base colors: namely, Red < Green < Blue.

3 Multicoloring in Triangle-Free Hexagonal Graphs

In this section, we shall study the problem of multicoloring a special type of hexag-
onal graph, say triangle-free hexagonal graph. In the next section, we will show that
finding a good solution for this problem will lead to an algorithm for finding a good
solution for a general hexagonal graph.

A graph is triangle-free if no three mutually-adjacent vertices have positive
weights. For a given vertex u with positive weight wu, from this definition of triangle-
free graph, only two possible configurations may exist for the structure of neighbors
with positive weights, which are shown in Fig. 4. It is easy to see that if u has 3
neighbors with positive weights, the neighboring vertices are of the same color. On
the other hand, if the neighbors are of different colors, u has at most 2 neighbors with
positive weights. There exists a simple structure in triangle-free graph, i.e., a vertex
has only one neighbor, we can regard this structure as the case in Fig. 4(b).

Consider vertex u with positive weight wu. Compute cu = wu + max{wv | v is u’s
neighbor}. cu is the weight of the maximum 2-clique adjacent to u, which also gives
the minimum number of colors needed for multicoloring a triangle-free hexagonal
graph. From the definition of cu, any feasible coloring of vertex u and its neighbors
requires at least cu colors.

Let du = �cu/3�. For each vertex u, define four color sets, each of size du:

1. colorsetu(Red) = {j ∈ {1, . . . ,4du} | j = 1 mod 4},
2. colorsetu(Green) = {j ∈ {1, . . . ,4du} | j = 2 mod 4},
3. colorsetu(Blue) = {j ∈ {1, . . . ,4du} | j = 3 mod 4}, and
4. extrasetu = {j ∈ {1, . . . ,4du} | j = 0 mod 4}.

Fig. 4 Structure of neighbors with positive weights

562 Algorithmica (2009) 54: 557–567

We will give a strategy to multicolor any vertex u with weight wu by assigning
wu colors from the above four sets so that no adjacent vertices are assigned the same
color. The assignment strategy assigns multicolors to u according to its base color
and neighboring structure, which can be described as follows.

Assume vertex u with base color X has neighboring structure A, i.e. all its
neighbors are of the same base color Y �= X. Let the third base color be Z where
Z �= X and Z �= Y . In this case, our strategy assigns multicolors to vertex u first
from colorsetu(X), then colorsetu(Z) if colorsetu(X) is not large enough, and finally
colorsetu(Y) if both colorsetu(X) and colorsetu(Z) are still not large enough.

On the other hand, if vertex u with base color X has neighboring structure B ,
then all three base colors appear in u and its neighbors. The strategy first assigns
multicolors from colorsetu(X), and if not large enough, then from the extra color set
extrasetu and finally from colorsetu(Y) where base color Y > Z �= X.

Note that in both cases, the colors in each color set may be assigned either from
bottom to top or from top to bottom (i.e., from the lowest integer to the highest or
from the highest to the lowest), depending on the base color or the parity of the vertex
so as to avoid conflicts.

The Strategy

1. If vertex u has no neighbors, just assign wu colors from 1 to wu.
2. If vertex u with base color X has neighboring structure A (Fig. 4(a)), let Y be the

base color of u’s neighbors and Z be the other third color. Assign wu multicolors
to vertex u as follows:
(a) Assign colors from colorsetu(X) in bottom-to-top order.
(b) If not enough, assign colors from colorsetu(Z) in bottom-to-top order if

X < Y ; top-to-bottom otherwise.
(c) If still not enough, assign colors from colorsetu(Y) in top-to-bottom order.

3. If vertex u with base color X has neighboring structure B (Fig. 4(b)), let Y and Z

be the base colors of the left neighbor and the right neighbor, respectively. Without
loss of generality, assume Y > Z. Assign wu multicolors to vertex u as follows:
(a) Assign colors from colorsetu(X) in bottom-to-top order.
(b) If not enough, assign colors from extrasetu in bottom-to-top order if u is odd

with respect to its two neighbors; top-to-bottom order otherwise.
(c) If still not enough, assign colors from colorsetu(Y) in top-to-bottom order.

Theorem 2 The above strategy is 1-local and can solve the multicoloring problem in
triangle-free hexagonal graphs with an asymptotic approximation ratio 4/3.

Proof From the description of the strategy, it is clear that the colors assigned to any
vertex depend only on neighboring information within distance 1, and thus, the strat-
egy is 1-local.

To prove that the above strategy solves the multicoloring problem, we must prove
that the colors assigned to any two adjacent vertices u and v are all different. As it
turns out, we need to analyze the three cases shown in Fig. 5. X and Y denote the two
respective different base colors of u and v. It is easy to see that different kinds of color
sets of u and v have no common colors. For example, colorsetu(Red)∩extrasetv = ∅.

Algorithmica (2009) 54: 557–567 563

Fig. 5 The local structure of vertices u and v

From the definition of cu, we have cu ≥ wu+wv and, since du = �cu/3�, cu ≤ 3du.
For Case A, the strategy would assign colors to u from colorsetu(X), then

colorsetu(Z) and then colorsetu(Y), and would assign colors to v from colorsetv(Y),
then colorsetv(Z) and then colorsetv(X). If the assigned colors of u and v are
from different color sets, there is no confliction. Otherwise, u and v use colors
from the same color set, colorset(X) = colorsetu(X) ∪ colorsetv(X), colorset(Y) =
colorsetu(Y) ∪ colorsetv(Y) or colorset(Z) = colorsetu(Z) ∪ colorsetv(Z). We study
these three cases in the following:

(A-1) where u is assigned colors from colorsetu(X) and v, after exhausting all colors
in colorsetv(Y) and colorsetv(Z), is assigned colors from colorsetv(X). This
means the weight wv is very large. Since wu + wv ≤ cu ≤ 3du, wu + wv ≤
cv ≤ 3dv , and since u and v use colorset(X) = colorsetu(X) ∪ colorsetv(X)

from opposite directions, u and v will not be assigned the same color;
(A-2) where u is assigned colors from colorsetu(Z) and v is assigned colors from

colorsetv(Z). Then, all the colors in colorsetu(X) are assigned to u and all the
colors in colorsetv(Y) are assigned to v. Since wu + wv ≤ min{3du,3dv}, and
since u and v use colorset(Z) = colorsetu(Z) ∪ colorsetv(Z) from opposite
directions (depending on whether X < Y or otherwise), u and v will not be
assigned the same color;

(A-3) where u is assigned colors from colorsetu(Y) and v is assigned colors from
colorsetv(Y). By similar analysis as in case (A-1), we can say that u and v

will not be assigned the same color.

In Case B, the strategy would assign colors to u from colorsetu(X), then
colorsetu(Z) and then colorsetu(Y). Also, the strategy would assign colors to v

from colorsetv(Y), then extrasetv and then colorsetv(X) or colorsetv(Z) depending
whether X < Z or otherwise. If the assigned colors of u and v are from different color
sets, there is no confliction. Otherwise, there are two subcases to be considered:

(B-1) where u is assigned colors from colorsetu(X) and v is assigned colors from
colorsetv(X) after exhausting all colors in colorsetv(Y) and extrasetv . This
means the weight wv of v is very large. Since wu + wv ≤ min{3du,3dv}, and
since u and v use colorset(X) = colorsetu(X) ∪ colorsetv(X) from opposite
directions, u and v will not be assigned the same color;

564 Algorithmica (2009) 54: 557–567

(B-2) where u is assigned colors from colorsetu(Y) and v is assigned colors from
colorsetv(Y). By similar analysis as in case (B-1), we can say that u and v will
not be assigned the same color.

In Case C, the strategy would assign colors to u from colorsetu(X), then
extrasetu and then colorsetu(Y) or colorsetu(Z), and would assign colors to v from
colorsetv(Y), then extrasetv and then colorsetv(X) or colorsetv(Z). We can say that
u and v cannot use colors from colorsetu(Z) and colorsetv(Z) at the same time. If it
happens, the colors in colorsetu(X), colorsetv(Y), extrasetu and extrasetv are all used
up, the total number of colors in these three color sets are no less than 3 min{du, dv},
which is a contradiction to the cu ≤ 3du or cv ≤ 3dv . So we have to consider three
subcases:

(C-1) where u is assigned colors from colorsetu(X) and v is assigned colors from
colorsetv(X) after exhausting all colors in colorsetv(Y) and extrasetv . This
means the weight wv is very large. Since wu + wv ≤ min{3du,3dv}, and since
u and v use colorset(X) = colorsetu(X) ∪ colorsetv(X) from opposite direc-
tions, u and v will not be assigned the same color;

(C-2) where u is assigned colors from extrasetu and v is assigned colors from
extrasetv . This means all the colors in colorsetu(X) and colorsetv(Y) have
been assigned to u and v, respectively. Since wu + wv ≤ min{3du,3dv}, and
since u and v use extraset = extrasetu ∪ extrasetv from opposite directions (the
parities of u and v are different), u and v will not be assigned the same color;

(C-3) where u is assigned colors from colorsetu(Y) and v is assigned colors from
colorsetv(Y). By similar analysis as in case (C-1), we can say that u and v will
not be assigned the same color.

For the whole triangle-free hexagonal graph, the maximal weight clique (2-clique)
c = maxu{cu} is a lower bound on the optimal value, and our algorithm uses at most
4 maxu{�cu/3�} colors. Thus, the above strategy has an asymptotic approximation
ratio of 4/3. �

From Lemma 1, we can easily have a 1-local asymptotic 4/3-competitive online
algorithm for frequency allocation in triangle-free cellular networks.

4 Multicoloring in Hexagonal Graphs

In this section, we consider multicoloring hexagonal graphs. Our strategy works in
two stages. In the first stage, each vertex assigns colors using local information on
the weights of this vertex and its neighboring vertices. After the first stage, some
vertices may be unsatisfied, i.e. not all of the necessary colors have been assigned, and
the unsatisfied vertices, along with the edges connecting them, form a triangle-free
graph. Applying the algorithm in the previous section, each vertex can be assigned
colors, to satisfy all the remaining unsatisfied vertices, by using 1-local information.
Combining these two stages, we have a 1-local algorithm for multicoloring hexagonal
graphs.

Algorithmica (2009) 54: 557–567 565

We now describe the first stage, which is similar to the first stage in [12]. In [12],
the algorithm needs to have the global information about the maximum weights of
“all” 3-cliques in the graph (stage 1) so as to have an acyclic graph of the remain-
ing unsatisfied vertices (for stage 2). As for an algorithm which is 1-local, only the
maximal weights of the local 3-cliques will be available (stage 1) and a triangle-free
hexagonal graph (which can be cyclic) will result (for stage 2). Consider vertex u with
base color X. Let Cu be the maximal weight among the 3-cliques including u, and
let ku = �Cu/3�. For the three base colors Red, Green and Blue, we define a cyclic
order among them as Red → Green, Green → Blue and Blue → Red. If X → Y ,
let mu be the maximal weight of the neighboring vertices with color Y . We define
color sets: colorsetu(Red) = {j ∈ {1, . . . ,3ku} | j ≡ 1 mod 3}, colorsetu(Green) =
{j ∈ {1, . . . ,3ku} | j ≡ 2 mod 3} and colorsetu(Blue) = {j ∈ {1, . . . ,3ku} | j ≡
0 mod 3}. In the first stage, vertex u with base color X and weight wu is assigned
colors from these sets using the strategy described as follows:

1. Vertex u is assigned colors from colorsetu(X) in bottom-to-top order.
2. If not enough and mu < ku, vertex u is assigned the upper min{ku − mu,wu − ku}

colors from colorsetu(Y).

After the first stage, each vertex has been assigned with some colors. The remain-
ing graph contains only those vertices whose colors have not been totally satisfied,
i.e., the number of assigned colors in vertex u is less than its weight.

Lemma 3 The remaining graph is triangle-free, i.e., contains no 3-clique.

Proof If some vertex u is still unsatisfied, it must be that wu > max{ku,2ku − mu}.
Thus, the remaining unsatisfied weight in vertex u is w′

u = wu − max{ku,2ku − mu}.
For any three mutually-adjacent vertices (3-clique) u, v and t , since min{Cu,Cv,Ct }≥
wu + wv + wt ≥ 3 min{wu,wv,wt }, we have min{ku, kv, kt } ≥ min{wu,wv,wt }.
Without loss of generality, assume wu = min{wu,wv,wt }, then obviously ku ≥ wu

and w′
u = 0. From the description of coloring strategy, we can say that at most two of

{w′
u,w

′
v,w

′
t } are strictly positive, which means at least one of the vertices (u, v and t)

has all its required colors totally assigned in the first stage. Therefore, the remaining
graph contains no 3-clique, i.e., is a triangle-free hexagonal graph. �

Lemma 4 The total weight of two neighboring vertices u and v in the remaining
graph is at most �min{Cu,Cv}/3�.

Proof For the remaining unsatisfied vertices, since w′
u = wu − max{ku,2ku − mu},

we have w′
u ≤ wu − (2ku − mu) = wu + mu − 2ku ≤ Cu − 2ku. For any two adjacent

unsatisfied vertices u and v, we can also get w′
u + w′

v ≤ wu − ku + wv − kv . If
Cu ≥ Cv , which implies ku ≥ kv , then we have w′

u + w′
v ≤ Cv − 2kv ≤ �Cv/3� as

Cv ≥ wu+wv . Similarly, if Cu ≤ Cv , which implies ku ≤ kv , then we have w′
u+w′

v ≤
Cu − 2ku ≤ �Cu/3�. Thus, the total remaining weight of any two adjacent unsatisfied
vertices is at most min{�Cu/3�, �Cv/3�}. �

From Lemma 3, the remaining graph is triangle-free, so in the second stage, we
can use the algorithm in Sect. 3 to process the remaining unsatisfied vertices. Each

566 Algorithmica (2009) 54: 557–567

vertex gets the remaining weight information from its adjacent vertices and the total
number of colors used in this stage is at most 4 maxu{��Cu/3�/3�} = 4 maxu�Cu−2

9 �
(Theorem 2 and Lemma 4).

Combining these two stages, we use at most maxu(3ku+4�Cu−2
9 �) ≤ maxu(3�Cu

3 �
+ 4�Cu−2

9 �) ≤ 13
9 Cu + 7 colors. Since Cu is a lower bound on the optimal solution,

the asymptotic approximation ratio for our strategy is 13/9.
Thus, we have the following theorem.

Theorem 5 There exists a 1-local asymptotic 13/9-competitive algorithm for the mul-
ticoloring problem in hexagonal graphs.

5 Conclusion

We have given an asymptotic 13/9-approximation algorithm for multicoloring hexag-
onal graphs. This implies an asymptotic 13/9-competitive solution for the online fre-
quency allocation problem, which involves servicing calls in each cell in a cellular
network. The distributed algorithm is practical in the sense that frequency allocation
can be done based on information about its neighbors and itself only. We note that, in
fact, when calls are requested or released in a cell, a constant number of frequencies
might have to be reassigned so as to actually achieve this asymptotic 13/9-competitive
bound.

Acknowledgements The authors thank Dr. Bethany M.Y. Chan for her efforts in making this paper more
readable.

References

1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution
techniques for frequency assignment problems. Q. J. Belg. Fr. Italian Oper. Res. Soc. (4OR) 1(4),
261–317 (2003)

2. Chan, W.-T., Chin, F.Y.L., Ye, D., Zhang, Y., Zhu, H.: Frequency allocation problem for linear cellular
networks. In: Proceedings of the 17th Annual International Symposium on Algorithms and Computa-
tion (ISAAC 2006), Dec. 2006. Lecture Notes in Computer Science, vol. 4288, pp. 61–70. Springer,
Berlin (2006)

3. Chan, W.-T., Chin, F.Y.L., Ye, D., Zhang, Y., Zhu, H.: Greedy online frequency allocation in cellular
networks. Inf. Process. Lett. 102, 55–61 (2007)

4. Chan, W.-T., Chin, F.Y.L., Ye, D., Zhang, Y.: Online frequency allocation in cellular networks. In:
Proceedings of the 19th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
2007), pp. 241–249

5. Caragiannis, I., Kaklamanis, C., Papaioannou, E.: Efficient on-line frequency allocation and call con-
trol in cellular networks. Theory Comput. Syst. 35(5), 521–543 (2002)

6. Hale, W.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)
7. Havet, F.: Channel assignment and multicoloring of the induced subgraphs of the triangular lattice.

Discrete Math. 233, 219–231 (2001)
8. Janssen, J., Krizanc, D., Narayanan, L., Shende, S.M.: Distributed online frequency assignment in

cellular networks. J. Algorithms 36(2), 119–151 (2000)
9. Jaumard, B., Marcotte, O., Meyer, C.: Mathematical models and exact methods for channel assign-

ment in cellular networks. In: Sansò, B., Soriano, P. (eds.) Telecommunications Network Planning,
pp. 239–255. Kluwer, Amsterdam (1999)

Algorithmica (2009) 54: 557–567 567

10. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile telecommunication
systems: a comprehensive survey. IEEE Pers. Commun. 3(3), 10–31 (1996)

11. MacDonald, V.: Advanced mobile phone service: the cellular concept. Bell Syst. Tech. J. 58(1) (1979)
12. McDiarmid, C., Reed, B.A.: Channel assignment and weighted coloring. Networks 36(2), 114–117

(2000)
13. Narayanan, L.: Channel assignment and graph multicoloring. In: Stojmenović, I. (ed.) Handbook of

Wireless Networks and Mobile Computing, pp. 71–94. Wiley, New York (2002)
14. Narayanan, L., Shende, S.M.: Static frequency assignment in cellular networks. Algorithmica 29(3),

396–409 (2001)
15. Narayanan, L., Tang, Y.: Worst-case analysis of a dynamic channel assignment strategy. Discrete

Appl. Math. 140(1-3), 115–141 (2004)
16. Sparl, P., Zerovnik, J.: 2-local 5/4-competitive algorithm for multicoloring triangle-free hexagonal

graphs. Inf. Process. Lett. 90, 239–246 (2004)
17. Sparl, P., Zerovnik, J.: 2-local 4/3-competitive algorithm for multicoloring hexagonal graphs. J. Al-

gorithms 55(1), 29–41 (2005)

	A 1-Local Asymptotic 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs
	Abstract
	Introduction
	Preliminary Terminology
	Multicoloring in Triangle-Free Hexagonal Graphs
	The Strategy

	Multicoloring in Hexagonal Graphs
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

